Матрицы и определители Аналитическая геометрия Функции нескольких переменных Уравнения в полных дифференциалах. Алгебра матриц Найти интеграл Вычислить несобственный интеграл Площадь плоской криволинейной трапеции

Задачи типового расчета по математике. Решение курсовой, контрольной, самостоятельной работы

ЗАДАНИЕ 7. Найти объем тела, ограниченного указанными поверхностями.

  Приведем решение двух задач на вычисление объемов тел, рассматривая тела с различной геометрией поверхности.

1) ,

2)   .

РЕШЕНИЕ.

 1). Тело  ограничено двумя поверхностями: параболоидом   и плоскостью . Изобразим это тело на чертеже (рис.75).

Рис.75

 Данное тело является -цилиндрическим брусом (рис.72); боковая поверхность выродилась в линию пересечения заданных поверхностей. Найдем область, в которую тело проектируется на плоскость , для чего из уравнений поверхностей, ограничивающих тело, следует исключить переменную  (т.е. совершить ортогональное проектирование):

  и .

Таким образом, областью  () является круг с центром в точке (0; 1) радиуса =1  (см. рис.75).

 Объем тела может быть вычислен с помощью тройного интеграла по формуле . В декартовой системе координат тройной интеграл записывается через повторный следующим образом:

,

откуда видно, что его вычисление сопряжено со значительными трудностями (на завершающей стадии вычисления повторного интеграла).

 Запишем интеграл в цилиндрической системе координат , с которой декартова система связана формулами

.

Якобиан  преобразования . Формула перехода (в интеграле) имеет вид

.

В нашем случае

.

Запишем уравнения параболоида и плоскости в цилиндрической системе координат:

.

Для окружности  имеем ; угол , очевидно, необходимо менять в пределах от 0 до . Таким образом ,

 

===.

Ответ. =.

 2) Изобразим тело , ограниченное поверхностями цилиндра , параболоида  и плоскостью  (рис.76).

Рис.76

Чтобы тройной интеграл записать в виде повторного, перейдем в уравнениях ограничивающих тело поверхностей к сферическим координатам. Следует использовать соотношения

.

Уравнение   переходит в , уравнение   в ; для уравнения конуса  получим последовательно: ,   и , откуда  и ; уравнение плоскости  переходит в уравнение , уравнение плоскости  в , т.е. в . Таким образом,

.

  Так как подынтегральная функция представляет собой произведение функций, каждая из которых зависит только от одной переменной, а пределы интегрирования постоянны, то повторный интеграл представляет собой просто произведение трех интегралов

ЗАДАНИЕ  9. Найти массу пластинки

():  ,

Плотность массы пластинки 

РЕШЕНИЕ.

 Область () – это часть эллиптического кольца (на рис.78 область () заштрихована). Массу плоской области можно вычислить по формуле

.

Подставляя заданную плотность  в двойной интеграл, для массы получим

.

Рис.78

 Очевидно, что область () не является ни -, ни - трапецией; при вычислении двойного интеграла в декартовой системе координат область () пришлось бы разбить на три области. Как для областей, заключенных между концентрическими окружностями с центром в начале координат “родной” является полярная система координат, так и для эллиптических колец  “своей “ является эллиптическая система координат (обобщенная полярная система координат)

Цилиндрический брус проектируется на плоскость  в криволинейную трапецию (D): 0 x 1, 0 y . Преобразуем тройной интеграл в повторный и вычислим его:

=

=[ замена переменных  ]=

Замечание. В цилиндрической системе координат вычисления упрощаются:

ЗАДАНИЕ 11. Вычислить криволинейный интеграл

по формуле Грина; замкнутый контур () складывается из двух кривых:  и  (см. рис. 80).

ЗАДАНИЕ 12. Вычислить массу дуги кривой () при заданной плотности :

1)  

2) (.

3) (.

РЕШЕНИЕ.

1) Рассматривается случай параметрического задания кривой (). Массу плоской кривой можно вычислить с помощью криволинейного интеграла первого рода: . Для вычисления его нужно свести к определенному интегралу от функции одной переменной по отрезку по формуле:

.

РЕШЕНИЕ.

Работа силы по перемещению материальной точки единичной массы есть линейный интеграл вдоль дуги  от точки  до точки 

.

Последний интеграл есть криволинейный интеграл второго рода по пространственной кривой . Его вычисление сводится к вычислению определенного интеграла, для чего кривую  надо представить в параметрической форме (условием задачи кривая  задана в виде линии пересечения поверхности кругового цилиндра  с плоскостью , см. рис.81).

Пример. Найдем , где - модуль радиус-вектора.

и .

По формуле 5 из этого равенства следует:

Мы получили формулу для вычисления гдариента радиальной функции.

Рассмотрим теперь поверхность уровня скалярного поля , т.е. поверхность, задаваемую уравнением . Предположим, что - непрерывно дифференцируемая функция от . Тогда уравнение касательной плоскости в точке , лежащей на этой поверхности,

Координаты вектора градиента представляют собой коэффициенты этого уравнения. Поэтому - нормаль к касательной плоскости в т. и, по определению, нормаль к самой поверхности уровня в этой точке.

Поток вектора через поверхность. Дивергенция векторного поля. Пусть - векторное поле, - двусторонняя поверхность. Пусть выбрана сторона, т.е. нормаль . Назовем - потоком вектораКурс лекций математического анализачерез поверхность в указанную сторону.

Этот термин совпадает со следующей гидродинамической задачей. Пусть - вектор скорости течения жидкости в момент . Посчитаем, сколько жидкости пройдет через малую часть поверхности за момент времени . Этот объем жидкости представляет собой цилиндр с основанием и высотой , т.е. этот объем равен .

Тогда для всей воверхности получим . Таким образом, поток представляет собой скорость изменения количества протекающей через жидкости в рассматриваемый момент времени.


Метод интегрирования по частям