Формула Грина Поверхностный интеграл Функция нескольких переменных Решение примерного варианта контрольной работы Производные ФНП высших порядков Функции комплексной переменной Векторное поле

Задачи типового расчета по математике. Решение курсовой, контрольной, самостоятельной работы

Деление отрезка в заданном отношении. Координаты середины отрезка. Определение площади треугольника по известным координатам его вершин. Площадь многоугольника

1. Если x1 и y1 - координаты точки A, а x2 и y2 - координаты точки B, то координаты x и y точки C, делящей отрезок AB в отношении , определяются по формулам

Если , то точка C(x, y) делит отрезок AB пополам, и тогда координаты x и y середины отрезка AB определяются по формулам

2. Площадь треугольника по известным координатам его вершин A(x1, y1), B(x2, y2), C(x3, y3) вычисляется по формуле

Полученное с помощью этой формулы число следует взять по абсолютной величине.

3. Площадь многоугольника с вершинами A(x1, y1), B(x2, y2), C(x3, y3), ..., F(xn, yn) равна

Выражение вида равно x1y2 - x2y1 и называется определителем второго порядка.

Элементы теории множеств

1. Логические символы

Квантор - заменяет выражение "для любого", "для произвольного", "для какого бы ни было".

Квантор - заменяет выражение "существует", "найдется".

Запись (импликация) означает, что из справедливости высказывания A вытекает справедливость высказывания B. Если, кроме того, из справедливости высказывания B вытекает справедливость A, то записываем . Если , то высказывание B является необходимым и достаточным условием для того, чтобы выполнялось высказывание A. [an error occurred while processing this directive]

Если предложения A и B справедливы одновременно, то записываем . Если же справедливо хотя бы одно из предложений A или B, то записываем .

2. Операции над множествами

Математическое понятие множества элементов принимается в качестве интуитивного. Множество задается правилом или признаком, согласно которому определяем, принадлежит ли данный элемент множеству или не принадлежит.

Множество обозначают символом A = {x}, где x - общее наименование элементов множества A. Часто множество записывают в виде A = {a, b, c, ...}, где в фигурных скобках указаны элементы множества A. Будем пользоваться обозначениями:

N - множество всех натуральных чисел;
Z - множество всех целых чисел;
Q - множество всех рациональных чисел;
R - множество всех действительных чисел;
C - множество всех комплексных чисел;
Z0 - множество всех неотрицательных целых чисел.

Запись (или ) означает, что элемент a принадлежит множеству A.

Запись (или ) означает, что элемент a не принадлежит множеству A.

Ясно, что

Если , то . Если при каждом множество f -1(y) состоит не более чем из одного элемента , то f называется взаимно однозначным отображением E в F. Впрочем, можно определить взаимно однозначное отображение f множества E на F.

Отображение называется:

- инъективным (или инъекцией, или взаимно однозначным отображением множества E в F), если , или если уравнение f(x) = y имеет не более одного решения;

- сюръективным (или сюръекцией, или отображением множества E на F), если f(E) = F и если уравнение f(x) = y имеет по крайней мере одно решение;

- биективным (или биекцией, или взаимно однозначным отображением множества E на F), если оно инъективно и сюръективно, или если уравнение f(x) = y имеет одно и только одно решение.


3. Суперпозиция отображений. Обратное, параметрическое и неявное отображения

1) Пусть и . Поскольку , то отображение g каждому элементу относит определенный элемент .

Таким образом, каждому посредством правила поставлен в соответствие элемент

Тем самым определено новое отображение (или новая функция), которое назовем композицией отображений, или суперпозицией отображений, или сложным отображением.

Функция. Отображение


1. Функция

Отображением множества E в множество F, или функцией, определенной на E со значениями в F, называется правило, или закон f, который каждому элементу ставит в соответствие определенный элемент .

Элемент называют независимым элементом, или аргументом функции f, элемент называют значением функции f, или образом; при этом элемент называется прообразом элемента .

Отображение (функцию) обычно обозначают буквой f или символом , указывая тем самым, что f отображает множество E в F. Употребляется также обозначение , указывающее, что элементу x соответствует элемент f(x). Иногда функцию удобно задавать посредством равенства, в котором содержится закон соответствия. Например, можно говорить, что "функция f определена равенством ". Если "y" - общее наименование элементов множества F, т. е. F = {y}, то отображение записывают в виде равенства y = f(x) и говорят, что это отображение задано явно.


2. Образ и прообраз множества при заданном отображении

Пусть задано отображение и множество .

Множество элементов из F, каждый из которых является образом хотя бы одного элемента из D при отображении f, называется образом множества D и обозначается f(D).

Очевидно, .

Пусть теперь задано множество .

Множество элементов таких, что , называется прообразом множества Y при отображении f и обозначается f -1(Y).


Метод интегрирования подстановкой (заменой переменной)