Формула Грина Поверхностный интеграл Функция нескольких переменных Решение примерного варианта контрольной работы Производные ФНП высших порядков Функции комплексной переменной Векторное поле

Задачи типового расчета по математике. Решение курсовой, контрольной, самостоятельной работы

Использование систем линейных уравнений при решении экономических задач

Пример 1.18. Из некоторого листового материала необходимо выкроить 360 заготовок типа А, 300 заготовок типа Б и 675 заготовок типа В. При этом можно применять три способа раскроя. Количество заготовок, получаемых из каждого листа при каждом способе раскроя, указано в таблице:

Тип

Способ раскроя

заготовки

1

2

3

А

3

2

1

Б

1

6

2

В

4

1

5

Записать в математической форме условия выполнения задания.

Решение. Обозначим через x, y, z количество листов материала, раскраиваемых соответственно первым, вторым и третьим способами. Тогда при первом способе раскроя x листов будет получено 3x заготовок типа А, при втором - 2y, при третьем - z.

Для полного выполнения задания по заготовкам типа А сумма
3x +2y +z должна равняться 360, т.е.

3x +2y + z =360.

Аналогично получаем уравнения

 x + 6y +2z = 300

 4x + y + 5z = 675,

которым должны удовлетворять неизвестные x, y, z для того, чтобы выполнить задание по заготовкам Б и В. Полученная система линейных уравнений и выражает в математической форме условия выполнения всего задания по заготовкам А, Б и В. Решим систему методом исключения неизвестных. Запишем расширенную матрицу системы и приведем ее с помощью элементарных преобразований к треугольному виду.

~ ~ ~
~ ~ ~ .

Следовательно, исходная система равносильна следующей:

 x + 6y +2z = 300,

 2y +9z = 570,

 -67z = - 4020.

Из последнего уравнения находим z = 60; подставляя найденное значение z во второе уравнение, получим y = 15 и, наконец, из первого имеем
x = 90. Итак, вектор C (90, 15, 60) есть решение системы.

Пример 1.19. Три судна доставили в порт 6000 т чугуна, 4000 т железной руды и 3000 т апатитов. Разгрузку можно производить как непосредственно в железнодорожные вагоны для последующей доставки потребителям, так и на портовые склады. В вагоны можно разгрузить 8000 т, а остаток груза придется направить на склады. Необходимо учесть, что поданные в порт вагоны не приспособлены для перевозки апатитов. Стоимость выгрузки 1 т в вагоны составляет соответственно 4,30, 5,25 и 2,20 ден. ед.

Записать в математической форме условия полной разгрузки судов, если затраты на нее должны составить 58850 ден. ед.

Решение. По условию задачи, доставленные в порт чугун, железную руду и апатиты можно разгрузить двумя способами: либо в железнодорожные вагоны, либо в портовые склады. Обозначим через x i j количество груза (в тоннах) i-го вида (i= 1,2,3), которое предполагается разгрузить j-м способом (j = 1, 2). Таким образом, задача содержит шесть неизвестных. Условие полной разгрузки чугуна можно записать в виде

x 11 + x 12 = 6000, (5.7)

где x 11, x 12 - части чугуна, разгружаемого соответственно в вагоны и на склады. Аналогичное условие должно выполняться и для железной руды:

x2 1 + x22 = 4000. (5.8)

Что же касается апатитов, то их можно разгружать только на склады, а поэтому неизвестное x 31 = 0, и условие полной разгрузки апатитов принимает вид

x 32 =3000. (5.9)

Условие полной загрузки всех поданных в порт вагонов запишется так:

x 11 + x 21 = 8000. (5.10)

Затраты на разгрузку, по условию, определены в 58850 ден. ед., что можно выразить записью:

4,3x 11 + 7,8 x 12 + 5,25 x 21 + 6,4x 22 + 3,25x 32 = 58850. (5.11)

Итак, с учетом сложившейся в порту ситуации условия полной разгрузки судов выражаются в математической форме системой линейных уравнений (5.7) - (5.11). С учетом (5.9) уравнение (5.11) перепишется в виде:

4,3x 11 + 7,8x 12 +5,25x 21 +6,4x 22 = 49100,

и теперь мы имеем систему из четырех уравнений с четырьмя неизвестными x 11, x 12, x 21, x 22, расширенная матрица которой имеет вид:

`A = .

Преобразуем ее к треугольному виду:

`A ~  ~  ~
~  ~ .

Наша система равносильна следующей:

 x 11 + x 12 = 6000,

 - x 12 + x 21 = 2000,

 x 21 + x 22 = 4000,

 -2,35 x 22 = - 4700,

откуда x 22 = 2000, x 21 = 2000, x 12 = 0, x 11 = 6000.

Пример 1.20.На предприятии имеется четыре технологических способа изготовления изделий А и Б из некоторого сырья. В таблице указано количество изделий, которое может быть произведено из единицы сырья каждым из технологических способов.

Записать в математической форме условия выбора технологий при производстве из 94 ед. сырья 574 изделий А и 328 изделий Б.

Изделие

Выход из единицы сырья

I

II

III

IV

А

2

1

7

4

Б

6

12

2

3

Решение. Обозначим через x1, x2, x3, x4 количество сырья, которое следует переработать по каждой технологии, чтобы выполнить плановое задание. Получим систему трех линейных уравнений с четырьмя неизвестными:

 x1 + x2 + x3 + x4 = 94,

 2x1 + x2 + 7x3 + 4x4 = 574,

 6x1 +12x2 +2x3 + 3x4 = 328.

Решаем ее методом Гаусса:

 ~ ~ .

Имеем: r (А) = r (А) = 3, следовательно, число главных неизвестных равно трем, одно неизвестное x4 - свободное. Исходная система равносильна следующей:

 x1 + x2 + x3 = 94 - x4,

 - x2 + 5x3 = 386 - 2x4,

 26x3 = 2080- 9x4.

Из последнего уравнения находим x3 = 80 - 9/26 x4, подставляя x3 во второе уравнение, будем иметь: x2 = 14 + 7/26x4 и, наконец, из первого уравнения получим: x1 = - 12/13 x4. С математической точки зрения система имеет бесчисленное множество решений, т. е. неопределенна. С учетом реального экономического содержания величины x1 и x4 не могут быть отрицательными, тогда из соотношения x1 = - 12/13 x4 получим: x1 = x4 = 0. Тогда вектор (0, 14, 80, 0) является решением данной системы.


Метод интегрирования подстановкой (заменой переменной)