Формула Грина Поверхностный интеграл Функция нескольких переменных Решение примерного варианта контрольной работы Производные ФНП высших порядков Функции комплексной переменной Векторное поле

Задачи типового расчета по математике. Решение курсовой, контрольной, самостоятельной работы

Решение примерного варианта контрольной работы №2

  Задача  Дано векторное поле  и уравнение плоскости d: 3x + y + 2z – 3 = 0. Требуется:

1)       найти поток поля  через плоскость треугольника АВС где А, В, и С – точки пересечения плоскости  d с координатными осями, в направлении нормали плоскости, ориентированной «от начала координат»; построить чертеж пирамиды ОАВС, где О – начало координат;

2)       используя формулу Остроградского-Гаусса, вычислить поток поля  через полную поверхность пирамиды ОАВС в направлении внешней нормали.

Решение.

1)     Чтобы вычислить поток поля  через плоскость треугольника АВС используем формулу (16): ПАВС =, где D – проекция треугольника АВС на плоскость xOy, F – функция, задающая плоскость d, которой принадлежит треугольник АВС.

Для построения чертежа найдем точки А, В, и С пересечения плоскости d с координатными осями: [an error occurred while processing this directive]

.

Построим чертеж пирамиды, отложив на координатных осях точки А, В, С и соединив их с началом координат O (рис. 12).

Из уравнения плоскости d: 3x + y + 2z – 3 = 0, которое имеет вид F(x, y, z) = 0, находим

 .

Поскольку все три проекции градиента положительные, то этот вектор образует с координатными осями острые углы, т.е. направлен «от начала координат» по отношению к плоскости d.

Это означает, что вектор  и орт «внешней» нормали , указанный в задаче, совпадают по направлению, поэтому вычисление потока через плоскость треугольника АВС сводится к вычислению двойного интеграла:

ПАВС = + (перед интегралом ставим знак «+»), где AOВ – проекция треугольника ABC на плоскость xOy.

  Для расстановки пределов интегрирования по треугольнику AOВ (рис. 13) найдем уравнение прямой АВ на плоскости xOy:

 Вычислим  и получим подинтегральную функцию, подставив = 2 и  (из уравнения плоскости):

.

Таким образом, поток поля  через плоскость треугольника АВС:

.

Вычислим внутренний интеграл по переменной y:

Вычислим внешний интеграл по переменной х:

.

 

  2) Чтобы вычислить поток поля  через полную поверхность пирамиды ОАВС, воспользуемся формулой Остроградского-Гаусса:

.

  Найдем дивергенцию этого поля по формуле (17): . Для поля  получаем:

.

  Вычислим поток поля   через полную поверхность пирамиды ОАВС:

, где  – объем пирамиды ОАВС. Этот объем можно вычислить, следующим образом:

.

В результате получаем: .

Ответы: 1) ПABC = 8,5, рисунок 12; 2) ПОАВС = –2,25.

Производная скалярного поля по направлению. Градиент скалярного поля. Во 2-м семестре мы уже рассматривали производную плоского поля (т.е. ) по направлению , . Понятие величины отрезкаопределяется аналогично и для . Напоминаем: величинаотрезка представляет собой его длину со знаком "+", если векторы и одинаково направлены и длину со знаком "-", если их направления противоположны. Тогда, по определению, .

Если введена система прямоугольных декартовых координат и вектор задан направляющими косинусами , то при условии дифференцируемости в т. легко вывести формулу: , где - градиент скалярного поля в точке .

Разумеется, понятие градиента можно ввести и без использования системы координат: , т.к. - единичный вектор.

Таким образом, , причем равенство наступает при условии . Наибольшее значение по всем выборам , таким образом, есть , а направление градиента – это как раз тот вектор , на котором это наибольшее значение достигается. Итак, направление и модуль вектора определено без использования координат. Это говорит об инвариантности этого понятия и о наличии реальных естественно-научных интерпретаций.


Метод интегрирования подстановкой (заменой переменной)