Формула Грина Поверхностный интеграл Функция нескольких переменных Решение примерного варианта контрольной работы Производные ФНП высших порядков Функции комплексной переменной Векторное поле

Задачи типового расчета по математике. Решение курсовой, контрольной, самостоятельной работы

Решение примерного варианта контрольной работы №2

Задача Вычислить работу силы  при перемещении точки приложения силы вдоль заданной кривой L:  от точки B до точки C, если значения параметра t в точках B и C заданы: .

Решение.

Для вычисления работы используем криволинейный интеграл II рода (формула (13)): .

Составленный криволинейный интеграл сводим к определенному интегралу, используя параметрические уравнения кривой ВС:

.

Для заданной кривой получаем:

Таким образом, для нахождения работы нужно вычислить определенный интеграл:

 Сделаем замену переменной в определенном интеграле:

, ,

тогда получим: .

 Используем прием «подведение под знак дифференциала части подинтегральной функции»:

Ответ:  ед. работы.

 

Задача 4. Задан радиус-вектор движущейся точки:

 . Найти векторы скорости и ускорения движения этой точки через 2 минуты после начала движения.

Решение.

Вектор-функция задана в виде: .

Найдем первые и вторые производные ее проекций x(t), y(t) z(t) по аргументу t:

Найдем векторы скорости и ускорения движения точки по формулам (14) и (15):

.

Через 2 минуты после начала движения векторы скорости и ускорения будут:

, .

Ответы: , .

Векторная запись формулы Стокса. Вспомним, что , где - направляющие косинусы к выбранной стороне.

При этом правая часть формулы Стокса принимает вид или . Итак, в сделанных выше предположениях теорема Стокса выглядит так: .

15.Скалярное и векторное поле. Определение и основные свойства градиента, дивергенции, ротора, потока и циркуляции векторного поля

Скалярное и векторное поле.

Определение.Скалярное поле на области (Курс лекций математического анализа) представляет собой произвольную функцию , определенную на .

Поверхности уровня скалярного поля – это множества решений уравнения при заданных значениях C.

Пример. На географической карте линии уровня (двумерный аналог поверхности уровня) показывают точки, лежащие на одной высоте. Аналогичные примеры – изотермы, изобары и т.д.

Векторное полена области (или ) – это вектор, координаты которого Курс лекций математического анализаявляются функциями, определенными на .

Примеры представляют собой силовое поле,поле скоростей и т.п.


Метод интегрирования подстановкой (заменой переменной)