Формула Грина Поверхностный интеграл Функция нескольких переменных Решение примерного варианта контрольной работы Производные ФНП высших порядков Функции комплексной переменной Векторное поле

Задачи типового расчета по математике. Решение курсовой, контрольной, самостоятельной работы

Задача. Дана функция двух переменных: z = x2xy + y2 – 4x + 2y + 5 и уравнения границ замкнутой области D на плоскости xОy: x = 0, y = –1,

x + y = 3. Требуется:

1) найти наибольшее и наименьшее значения функции z в области D;

2) сделать чертеж области D в системе координат, указав на нем точки, в которых функция имеет наибольшее и наименьшее значения.

Решение.

1)       Для наглядности процесса решения построим область D в системе координат. Область D представляет собой треугольник, ограниченный прямыми x = 0, y = –1 и x + y = 3. Обозначим вершины треугольника: A, B, C (рис 9).

Чтобы найти наибольшее и наименьшее значения функции z, сначала найдем все стационарные точки функции z = x2xy + y2 – 4x + 2y + 5, лежащие внутри области D (если они есть), и вычислим в них значения функции.

Стационарные точки – это точки, в которых все частные производные

1-го порядка равны нулю:

Решаем систему:

 Стационарная точка М(2, 0) (рис. 9) и является внутренней точкой области. Вычислим значение функции в этой точке:

.

 Теперь найдем наибольшее и наименьшее значения функции на границе области D. Граница является кусочно-заданной, поэтому будем проводить исследование функции z (x, y) отдельно на каждом участке границы.

а) Уравнение участка АВ имеет вид:  и функция z  является функцией одной переменной у:

.

Исследуем поведение z1 (y) по правилам нахождения наибольшего и наименьшего значений функции одной переменной на замкнутом промежутке. Как известно, непрерывная функция на замкнутом промежутке достигает своих наибольшего и наименьшего значений либо на концах промежутка, либо в стационарных точках внутри промежутка (если они есть).

Исследуем поведение функции z1(y) на участке АВ:  – стационарная точка на границе АВ, совпадающая с левым концом промежутка. Сравнивая значения функции z1(A) = z1(–1) = 4, z1(B) = z1(3) = 20, получаем: .

б) Уравнение участка АС имеет вид:  и функция z  является

функцией одной переменной x:

.

Исследуем поведение функции z2(х) на участке АС:  – стационарная точка на границе АС, лежащая внутри промежутка. Сравнивая значения функции z2(A) = z1(А) = 4, z2(С) = z2(4) = 8 и z2(х0) = z2(1,5) =1,75, получаем: .

в) Уравнение участка ВС имеет вид:  и функция z  является функцией одной переменной х:

Исследуем поведение функции z3(х) на участке ВС:  – стационарная точка на границе ВС, лежащая внутри промежутка. Сравнивая значения функции

z3(В) = z1(В) = 20, z3(С) = z2(С) = 8 и z3(х1) = z3(2,5) =1,25,

получаем: .

 Сравнивая все найденные значения функции, выбираем среди них наибольшее и наименьшее значения функции z (x, y) в области D:

zнаиб = z(В) = 20,  zнаим = z(М) = 1.

2) Отметим на построенном ранее чертеже области D (рис. 9) точки, в которых функция имеет наибольшее и наименьшее значения: В(0,3) и М(2,0), а также все найденные в процессе решения точки, указав значения функции  z(x, y) в этих точках.

Ответы: 1) zнаиб = z(В) = z(0,3) = 20,  zнаим = z(М) = z(2,0) = 1; 2) рисунок 9.

Пример. Приведем пример вычисления поверхностного интеграла 2-го типа , где- внешняя сторона сферы . Обозначим . Из соображений симметрии очевидны равенства , так что . Поверхность состоит из частей и , задаваемых уравнениями (это - верхняя полусфера) и (это уравнение для нижней полусферы ). На внешняя нормаль составляет с осью острый угол, на - тупой.

Поэтому . Аналогично, т.к. на , а нормаль составляет с осью тупой угол, . Значит, . Поэтому .

13.Формула Остроградского. Ее векторная запись

Теорема. Пусть - замкнутая кусочно-гладкая поверхность, ограничивающая тело в пространстве. Пусть выбрана внешняя сторона . Пусть - функции, имеющие непрерывные производные на . Тогда . Равносильная формулировка: , где - внешняя нормаль к .

Доказательство. Предположим, что ограничено сверху - графиком функции , снизу - , , а сбоку – цилиндрической поверхностью .

Вычислим, т.к. на внешняя нормаль составляет с осью тупой угол.

Далее, на и можно добавить к сумме слагаемое .

Итак, .


Метод интегрирования подстановкой (заменой переменной)