Формула Грина Поверхностный интеграл Функция нескольких переменных Решение примерного варианта контрольной работы Производные ФНП высших порядков Функции комплексной переменной Векторное поле

Задачи типового расчета по математике. Решение курсовой, контрольной, самостоятельной работы

Задача. Найти частные производные  и , если переменные x, y, и z связаны равенством 4x2 y ezcos(x3z) + 2y2 + 3x = 0.

Решение.

Имеем равенство вида F(x, y, z) = 0, задающее неявно функцию 2-х переменных. Для вычисления частных производных можно использовать формулы (2) и (3).

Для F(x, y, z) = 4x2yezcos(x3z) + 2y2 + 3x  получаем:

F= (4x2yez cos(x3z) + 2y2 + 3x) = [считаем y и z постоянными] =

= 8xyez + sin(x3z)3x2 + 3 = 8xyez + 3x2sin( x3z) + 3;

F= (4x2yez cos(x3z) + 2y2 + 3x) = [считаем x и z постоянными] =

= 4x2ez + 4y;

F = (4x2yez cos(x3z) + 2y2 + 3x) = [считаем x и y постоянными] =

= 4x2yez sin (x3z).

По формулам (2) находим частные производные функции z = z(x, y):

 

По формуле (3) получаем частную производную функции y = y(x, z):

.

Ответы: ;

.

 

Задача 3. Дана сложная функция z = ln(2t x2y), где x = cos3t, . Найти полную производную .

Решение. Используя формулу (4), получаем:

.

Подставив в полученный результат x = cos3t, , получим выражение полной производной  через независимую переменную t:

Ответ: .

Следствие 1. Если поверхность допускает представление как в виде , так и в виде и в виде , то при условиях теоремы 1 , где выбор знака + или – перед соответствующим слагаемым в правой части равенства определяется тем, какой угол составляют нормали к выбранной стороне с соответствующей осью.

Следствие 2. Если представляет собой конечное объединение непересекающихся поверхностей, , каждая из которых удовлетворяет условиям следствия 1, то и для вычисления используется следствие 1.

Теорема 2. Пусть двусторонняя поверхность задана параметрическими уравнениями , где - непрерывно дифференцируемые функции и .

Тогда для непрерывным на функций и выбранной нормали , где, напоминаем, , , . При этом выбор знака "+" или "-" перед интегралом производится в соответствии с выбором нормали (и, следовательно, стороны) поверхности. К примеру, если указано, что нормаль составляет с осью острый угол, то знак перед интегралом совпадает со знаком .

Теорема 2 также дана без доказательства.


Метод интегрирования подстановкой (заменой переменной)