Формула Грина Поверхностный интеграл Функция нескольких переменных Решение примерного варианта контрольной работы Производные ФНП высших порядков Функции комплексной переменной Векторное поле

Задачи типового расчета по математике. Решение курсовой, контрольной, самостоятельной работы

Решение примерного варианта контрольной работы №1

Задача 1. Дана функция z = cos2(2xy). Требуется:

1) найти частные производные  и ;

2) найти полный дифференциал  dz;

3) показать, что для данной функции справедливо равенство: .

Решение.

1) При нахождении  считаем аргумент y постоянным:

= (cos2(2x – y)) = 2cos(2x – y)(cos(2x y)) =

= 2cos(2x – y)(sin(2x y))(2x y) = 2cos(2x – y)sin(2x y)((2x) – (y)) =

= 2cos(2x – y)sin(2x y)(2 – 0) = sin(2(2xy))2 = 2sin(4x – 2y).

При нахождении  считаем аргумент x  постоянным:

 = (cos2(2x y)) = 2cos(2x y)(cos(2x y)) =

= 2cos(2x y)(–sin(2xy))(2x y)  = –2cos(2x y)sin(2xy)((2x)  – (y)) =

= – sin(2(2xy))(0 – 1) = sin(4x – 2y).

2) По формуле (1) находим полный дифференциал функции:

dz =  = –2sin(4x – 2y)dx + sin(4x – 2y)dy.

3) Найдем смешанные частные производные второго порядка.

Для того, чтобы найти , дифференцируем  по у:

 =  = (–2sin(4x – 2y)) = [считаем x постоянным] =

= – 2cos(4x – 2y)(4x – 2y) = – 2cos(4x – 2y)(0 – 2) = 4cos(4x – 2y).

Для того, чтобы найти , дифференцируем  по x:

 =  = (sin(4x – 2y)) = [считаем  y постоянным] =

= cos(4x – 2y)(4x – 2y) = cos(4x – 2y)(4 – 0) = 4cos(4x – 2y).

Получили:  = 4cos(4x – 2y),  = 4cos(4x – 2y)  .

Ответы: 1) = –2sin(4x – 2y);  = sin(4x – 2y);

2) dz = –2sin(4x – 2y)dx + sin(4x – 2y)dy;

3) равенство  выполнено.

Поверхностные интегралы 2-го рода.

Пусть двусторонняя поверхность. Выберем определенную сторону этой поверхности. Пусть обозначает нормаль, соответствующую выбранной стороне.

Предположим, что задано векторное поле , определенное и непрерывное на .

Определение. Величина называется поверхностным интегралом 2-го типа от векторного поля по выбранной стороне поверхности .

Этот же интеграл часто записывают так: . При этом для выбранной стороны использованы обозначения , .

Для вычисления поверхностного интеграла 2-го типа используются следующие правила.

Теорема 1. Пусть поверхность задана уравнением , где - непрерывно дифференщируемая в области функция, - непрерывная на функция. Тогда если выбрана верхняя сторона , то , а если выбрана нижняя сторона, то .

Аналогично, если задана уравнением , , где - непрерывно дифференцируемая функция на , то , если нормаль составляет с осью острый угол и , если нормаль составляет с осью тупой угол.

Если же , - непрерывно дифференцируемая на функция, а непрерывна на , то , если выбранная нормаль составляет с осью острый угол и , если нормаль составляет с осью тупой угол.

Теорема сформулирована без доказательства.


Метод интегрирования подстановкой (заменой переменной)