Формула Грина Поверхностный интеграл Функция нескольких переменных Решение примерного варианта контрольной работы Производные ФНП высших порядков Функции комплексной переменной Векторное поле

Задачи типового расчета по математике. Решение курсовой, контрольной, самостоятельной работы

Формула Остроградского-Гаусса. Дивергенция

Формула Остроградского-Гаусса устанавливает связь между интегралом по замкнутой поверхности σ  в направлении ее «внешней» нормали и тройным интегралом по области V, ограниченной этой поверхностью:

.

Пусть  – векторное поле, заданное в области VxOyz . Дивергенцией векторного поля  называется скалярная функция

, (17)

которая характеризует наличие источников (если > 0) и стоков (если < 0), или их отсутствие (если = 0) векторного поля в точке М. [an error occurred while processing this directive]

Используя выражения для дивергенции и для потока вектора  через замкнутую поверхность σ, можно записать формулу Остроградского-Гаусса в векторном виде:

, (18)

т.е. поток вектора  через замкнутую поверхность σ в направлении ее «внешней» нормали (рис. 7) равен тройному интегралу от дивергенции этого поля по области V, ограниченной поверхностью σ.

 

Потенциальное векторное поле и его потенциал

Векторное поле  называется потенциальным, если существует такая скалярная функция U(x, y, z), что . Функция U называется потенциалом векторного поля .

Из определения следует, что потенциальное векторное поле – это поле градиентов некоторого скалярного поля U(M) = U(x, y, z).

Пусть векторное поле  задано в некоторой области V.

Область V называется односвязной, если любой замкнутый контур (кривую), лежащий в ней, можно путем непрерывной деформации стянуть в точку, не выходя за пределы данной области. Для плоской области D односвязность означает, что для любого замкнутого контура, лежащего в ней, ограниченная этим контуром часть области целиком принадлежит D.

Потенциальность векторного поля, заданного в односвязной области V, определяется при помощи его ротора: если во всех точках области V ротор векторного поля  – нулевой вектор, то это векторное поле является потенциальным.

Важное свойство потенциальных полей заключается в том, что если  потенциальное векторное поле, заданное в некоторой односвязной области V, то выражение

 является полным дифференциалом функции U(x, y, z). В этом случае криволинейный интеграл вида

вдоль любой кривой ВС, принадлежащей V, не зависит от формы кривой  и равен разности потенциалов в конечной и начальной точках:

.

Это свойство можно использовать для нахождения потенциала векторного поля при помощи криволинейного интеграла II рода. Для этого нужно взять фиксированную точку В(x0, y0, z0) и произвольную (текущую) точку С(x, y, z) и вычислить криволинейный интеграл по пути ВС:

.

При этом получаем потенциал U(x, y, z) векторного поля  с точностью до произвольного постоянного слагаемого.

 В качестве пути интегрирования ВС обычно выбирают ломаную ВEKC (рис. 8), звенья которой параллельны осям координат и E(x, y0, z0), K(x, y, z0).

В этом случае потенциал U(x, y, z) находят по формуле:

 

. (20)

Если в односвязной области задано потенциальное векторное поле силы

,

то с помощью потенциала можно найти работу силы  при перемещении единичной массы из одной заданной точки M этой области в другую точку N как разность значений потенциалов в этих точках:

.  (21)

Вместо этого приведем пример вычисления поверхностного интеграла 1-го типа.

Задача. Найти , где - граница тела .

Решение. Это тело представляет собой конус. состоит из боковой поверхности и основания . На боковой поверхности, уравнение которой всюду, кроме точки и и .

Нарушение этой формулы в единственной точке не повлияет на результат, поэтому , где - проекция на плоскость , т.е. - круг .

В интеграле, стоящем в правой части, перейдем к полярным координатам: ( - якобиан преобразования) .

Основание задано уравнением , поэтому и (этот интеграл отличается от вычисленного выше лишь множителем, поэтому подробное вычисление опущено).

Итак, весь интеграл .


Метод интегрирования подстановкой (заменой переменной)