Формула Грина Поверхностный интеграл Функция нескольких переменных Решение примерного варианта контрольной работы Производные ФНП высших порядков Функции комплексной переменной Векторное поле

Задачи типового расчета по математике. Решение курсовой, контрольной, самостоятельной работы

Векторное поле

Поток векторного поля через поверхность

Если в любой точке M(x, y, z) области VxOyz задан вектор , то говорят, что в области V задано векторное поле .

Примеры: силовое поле , поле скоростей  текущей жидкости, поле электростатических напряженностей .

Векторное поле является заданным, если задана векторная функция  от координат точки M(x, y, z). Как правило, функцию задают в виде , где P (x, y, z),  Q (x, y, z),  R (x, y, z) являются функциями, о которых предполагают, что они непрерывны и имеют непрерывные частные производные по x, y, z  в области V (область V  может совпадать со всем пространством).

Аналогично определяют плоское векторное поле  в двумерной области D: .

Пусть в области VxOyz задана двусторонняя поверхность σ, в каждой точке которой определен орт внешней нормали  единичной вектор, коллинеарный нормали к поверхности в этой точке и направленный в сторону, которую условились считать «внешней» стороной поверхности.

Поток векторного поля  через поверхность σ  – это интеграл по поверхности σ  от скалярного произведения вектора  на орт нормали  к поверхности (рис. 6):

.

Поток – это интегральная характеристика векторного поля, она является скалярной величиной. Например, для поля скоростей   текущей жидкости поток характеризует количество жидкости, проходящей через поверхность σ в направлении «внешней» нормали в единицу времени.

Если поверхность σ задана уравнением F(x, y, z) = 0, то вектор ее нормали коллинеарен градиенту функции, задающей поверхность: , следовательно, орт нормали

 .

Для вычисления поверхностного интеграла  поверхность σ проектируют на одну из координатных плоскостей, например, в область DxOy. Тогда , и вычисление потока сводится к вычислению двойного интеграла:

, (16)

где знак «+» следует брать в случае, когда вектор  и орт «внешней» нормали , указанный в задаче, совпадают по направлению; если эти векторы противоположны по направлению, следует брать знак «–».

 При вычислении двойного интеграла  нужно подынтегральную функцию выразить через переменные x, y, используя заданное уравнение поверхности F(x, y, z) = 0.

Поток вектора через замкнутую поверхность σ в направлении ее «внешней» нормали обозначают .

Векторная трубка – это совокупность векторных линий.

Пусть - сечения векторной трубки и - ее боковая поверхность. . Рассмотрим внешнюю нормаль к и применим теорему Остроградского: , в случае соленоидального поля. Итак, . На по определению векторной линии , поэтому или . Изменяя направление нормали на на противоположное получаем, что поток соленоидального поля через поперечные сечения векторных трубок постоянен.

17.Потенциальное поле

Легко вычислить, что .

Можно доказать и обратное. Если область односвязная и векторное поле удовлетворяет условию , то - потенциальное, т.е. существует функция такая, что .

Отметим, что выводы о независимости интеграла от формы пути интегрирования, сделанные для двумерного случая, полностью переносятся и на трехмерный. Полученное там условие и вполне аналогичны.


Метод интегрирования подстановкой (заменой переменной)