Формула Грина Поверхностный интеграл Функция нескольких переменных Решение примерного варианта контрольной работы Производные ФНП высших порядков Функции комплексной переменной Векторное поле

Задачи типового расчета по математике. Решение курсовой, контрольной, самостоятельной работы

Скалярное поле. Градиент. Производная по направлению

Говорят, что в двумерной области DxOy задано скалярное поле, если в каждой точке M(x, y) Î D задана скалярная функция координат точки:

U(M) = U(x, y).

Пример: скалярное поле температур T(x, y) в области D.

Линии уровня скалярного поля – это такие линии, на каждой из которых функция U(x, y) сохраняет постоянное значение.

Уравнения линий уровня скалярного поля: U(x, y) = const.

Геометрически линии уровня получаются, если поверхность z = U(x, y) пересекать горизонтальными плоскостями z = С и проектировать линии пересечения на плоскость xOy.

Градиентом скалярного поля U(x, y) в фиксированной точке  называется вектор, проекции которого на оси координат совпадают с частными производными функции, вычисленными в точке М0:

, (7)

где векторы  – это орты координатных осей.

Вектор градиента  направлен перпендикулярно касательной к линии уровня, проходящей через точку М0. Направление градиента указывает направление наибольшего роста функции U(x, y) в точке М0 .

Отложим от фиксированной точки M0(x0, y0) некоторый вектор .

Скорость изменения скалярного поля U(x, y) в направлении вектора характеризует величина , называемая производной по направлению.

Если в прямоугольной системе координат xОy   вектор  имеет направляющие косинусы cosa и cosb, то производная функции U(x, y) по направлению вектора  в точке М0 – число  – можно найти по формуле:

, (8)

Напомним формулы для вычисления направляющих косинусов вектора :

, где модуль вектора: .

Аналогично определяют скалярное поле U(M) в трехмерной области V:

U(M) = U(x, y, z), . Поверхности уровня скалярного поля – это такие поверхности, на каждой из которых функция U(x, y, z) сохраняет постоянное значение. Уравнения поверхностей уровня скалярного поля: U(x, y, z) = const.

Градиент скалярного поля U(x, y, z) в произвольной точке M(x, y, z):

, (9)

где векторы  – это орты координатных осей.

 Вектор  поля U(x, y, z) направлен параллельно нормали к поверхности уровня U(x, y, z) = const в точке М.

Поток вектора через поверхность. Дивергенция векторного поля. Пусть - векторное поле, - двусторонняя поверхность. Пусть выбрана сторона, т.е. нормаль . Назовем - потоком вектораКурс лекций математического анализачерез поверхность в указанную сторону.

Этот термин совпадает со следующей гидродинамической задачей. Пусть - вектор скорости течения жидкости в момент . Посчитаем, сколько жидкости пройдет через малую часть поверхности за момент времени . Этот объем жидкости представляет собой цилиндр с основанием и высотой , т.е. этот объем равен .

Тогда для всей воверхности получим . Таким образом, поток представляет собой скорость изменения количества протекающей через жидкости в рассматриваемый момент времени.

Пусть векторное поле задано в выбранной системе координат как . Назовем дивергенциейскалярное поле (при условии, что эти частные производные существуют).

Легко доказать, что:

  1. . Здесь - скалярное поле и символ

обозначает скалярное произведение этих векторов.


Метод интегрирования подстановкой (заменой переменной)