Формула Грина Поверхностный интеграл Функция нескольких переменных Решение примерного варианта контрольной работы Производные ФНП высших порядков Функции комплексной переменной Векторное поле

Задачи типового расчета по математике. Решение курсовой, контрольной, самостоятельной работы

Производные ФНП высших порядков

Пусть функция z = f (x, y) имеет в точке (x, y) и её окрестности непрерывные частные производные первого порядка  и . Так как  и  являются функциями тех же аргументов x и y, то их можно дифференцировать по x и по y. При этом возможны следующие 4 варианта:

– эти частные производные называются частными производными второго порядка от функции z (x, y).

Частные производные  и   называются смешанными частными производными второго порядка.

Пример. Дана ФНП . Вычислим все её частные производные второго порядка.

Основное свойство смешанных частных производных: если функция z = f (x, y) и её частные производные , ,  и  определены и непрерывны в точке (x, y) и некоторой её окрестности, то в этой точке =, то есть смешанные частные производные при условии их непрерывности не зависят от порядка, в котором производится дифференцирование.

Например, если область не содержит начала координат, то . Действительно,

, .

Т.о. условие выполнено во всей области (которая не содержит точки ).

С другой стороны, пусть содержит . Рассмотрим - окружность радиуса , содержащуюся в . Параметризуем эту окружность: . Тогда . Это связано с тем, что область, в которой непрерывны многосвязная.


Метод интегрирования подстановкой (заменой переменной)