Формула Грина Поверхностный интеграл Функция нескольких переменных Решение примерного варианта контрольной работы Производные ФНП высших порядков Функции комплексной переменной Векторное поле

Задачи типового расчета по математике. Решение курсовой, контрольной, самостоятельной работы

Полное приращение и полный дифференциал ФНП

Полным приращением функции двух переменных z = f (x, y) в точке (x, y), вызванным приращениями аргументов  и , называется выражение  .

Функция z = f (x, y) называется непрерывной в точке (x, y), если бесконечно малым приращениям аргументов соответствует бесконечно малое полное приращение функции.

Если обозначить  – расстояние между близкими точками   и (х, у), то  – это определение непрерывности ФНП на языке приращений.

Если функция z = f (x, y) непрерывна в любой точке (х, у)ÎD, то она называется непрерывной ФНП в области D.

  Функция z = f (x, y), полное приращение Dz которой в данной точке (x, y) может быть представлено в виде суммы двух слагаемых: выражения, линейного относительно  и , и величины, бесконечно малой более высокого порядка малости относительно , называется дифференцируемой ФНП в данной точке, а линейная часть ее полного приращения называется полным дифференциалом ФНП.

Если , где   бесконечно малые при , то полный дифференциал функции z = f (x, y) выражается формулой: , или:

 (1)

(приращения независимых переменных совпадают с их дифференциалами: Dх = dx, Dy = dy).

Из определения полного дифференциала следует его связь с полным приращением: при малых  и  полное приращение функции Dz примерно равно ее полному дифференциалу:  с точностью до бесконечно малых более высокого порядка малости относительно .

Полный дифференциал функции z = f (x, y) зависит как от точки M(x0, y0), в которой он вычисляется, так и от приращений  и .

В случае, если , соединяющие точки не имеют других общих точек, то, как и в предыдущей части, состоит из и проходимой в противоположном направлении . Поэтому , откуда .

Б) Если имеют конечное число общих точек, кроме и , то можно применить пункт 2А к каждому полученному контуру, интеграл по которому в связи с предположением равен 0, и поэтому для каждой такой полученной части .

В) Случай, когда кроме и кривые имеют бесконечное множество общих точек, мы оставим без доказательства.

Сопоставляя теорему 2 с теоремой 1, получаем следствие.

Следствие. Пусть - односвязная область. не зависит в от формы пути интегрирования тогда и только тогда, когда в этой области выполняется тождество .

10.Признак полного дифференциала на плоскости

Если - дифференцируемая функция двух переменных, то . Выясним, при каких условиях на существует такая функция , что , т.е. . В предположении непрерывности смешанных производных: или . Докажем, что если - односвязная область, то верно и обратное.

Теорема 3. Если в односвязной области , то существует такая, что .

Доказательство. Возьмем произвольную точку и рассмотрим переменную точку и любую кривую , соединяющую с .

По следствию теоремы 2, зависит только от конечной точки и, значит, есть некоторая функция . Покажем, что - искомая функция, т.е. . Для этого рассмотрим точку и рассмотрим , где - отрезок прямой, соединяющей точки . На этом отрезке и . Применяя теорему о среднем, получаем (ввиду непрерывности ), что , где . Тогда . . Для доказательство аналогичное.

Замечание. Если векторное поле обладает свойством в односвязной области , то говорят, что - потенциальное поле и найденная функция такая, что , т.е. , называется потенциалом поля .

Следствие. В потенциальном поле работа вдоль любого замкнутого контура равна 0. Вообще, если соединяет , то работа вдоль равна . Т.е. работа равна разности потенциалов.

Примечание. Условие односвязности существенно.


Метод интегрирования подстановкой (заменой переменной)