Формула Грина Поверхностный интеграл Функция нескольких переменных Решение примерного варианта контрольной работы Производные ФНП высших порядков Функции комплексной переменной Векторное поле

Задачи типового расчета по математике. Решение курсовой, контрольной, самостоятельной работы

Задача 2. Используя тройной интеграл в цилиндрической системе координат, вычислить массу кругового цилиндра, нижнее основание которого лежит в плоскости xOy, а ось симметрии совпадает с осью Oz, если заданы радиус основания R = 0,5, высота цилиндра H = 2 и функция плотности , где r – полярный радиус точки.

Решение.

 Массу кругового цилиндра можно вычислить, используя тройной интеграл по области V, по формуле (12):

,

где – функция плотности, а V – область, соответствующая цилиндру.

Переходя к трехкратному интегралу в цилиндрических координатах, получаем:

,

где область интегрирования V (круговой цилиндр) можно задать системой неравенств:  при R = 0,5 и H = 2.

Для определения массы цилиндра нужно вычислить трехкратный интеграл:

.

Вычислим внутренний интеграл по переменной z: .

Затем находим интеграл по переменной r:

 Третий этап – вычисление внешнего интеграла по переменной φ:

.

Ответ:  ед. массы.

Если поверхность задана параметрически, то, как указывалось в §1, в окрестности любой ее точки ее возможно задать явным уравнением ( или или ).

Предположим, что поверхность, заданная параметрически, представляет собой конечное объединение частей, каждая из которых задана явным уравнением и рассмотрим одну из частей, для которой . Тогда площадь этой части, по доказанному выше, равна . Перейдем в этом интеграле к переменным , учитывая, что якобиан перехода – это как раз определитель , а , и пусть области соответствует область на плоскости . Тогда по теореме о замене переменных .

Легко проверить, что в случае уравнения или получится интеграл такого же вида: .

Объединяя все полученные части, получаем общую площадь , где - вся область изменения параметров .

Отметим, что выражение можно преобразовать к более удобному для вычислений виду.

Числа суть координаты . Поэтому - квадрат модуля вектора . Напомним, что модуль векторного произведения равен ( - угол между ). Значит, . Здесь ; и . Итак, и формула для площади поверхности, заданной параметрически, такова: .

12.Интегралы по поверхности 1 и 2 рода

Поверхностные интегралы 1-го рода. Пусть - двусторонняя поверхность, имеющая площадь . Рассмотрим разбиение этой поверхности на части с помощью непрерывных кривых. Пусть функция определена во всех точках поверхности . Выберем произвольным образом точки и рассмотрим сумму .


Метод интегрирования подстановкой (заменой переменной)