Формула Грина Поверхностный интеграл Функция нескольких переменных Решение примерного варианта контрольной работы Производные ФНП высших порядков Функции комплексной переменной Векторное поле

Задачи типового расчета по математике. Решение курсовой, контрольной, самостоятельной работы

Решение примерного варианта контрольной работы №2

Задача 1. Используя двойной интеграл, вычислить статический момент относительно оси Ox тонкой однородной пластинки, имеющей форму области D, ограниченной заданными линиями: . Построить чертеж области интегрирования.

Указание. Считать плотность вещества .

Решение.

 Область D (рис. 11) представляет собой криволинейный треугольник MNK, где . Для определения координат точки М решаем систему уравнений:

Область D – правильная в направлении оси Oх, она задается системой неравенств:  где  – это уравнения линий, ограничивающих область слева и справа.

Найдем статический момент пластинки MNK относительно оси Ox по формуле (11):

.

Для вычисления двойного интеграла сводим его к повторному интегралу в соответствии с системой неравенств, задающих область D:

Ответы: Mx = 4,125 ед. стат. момента; область интегрирования на рисунке 11.

Задача 1. Используя двойной интеграл, вычислить статический момент относительно оси Ox тонкой однородной пластинки, имеющей форму области  D, ограниченной заданными линиями: . Построить чертеж области интегрирования.

Указание. Считать плотность вещества .

Решение.

 Область D (рис. 11) представляет собой криволинейный треугольник MNK, где . Для определения координат точки М решаем систему уравнений:

Задача 2. Используя тройной интеграл в цилиндрической системе координат, вычислить массу кругового цилиндра, нижнее основание которого лежит в плоскости xOy, а ось симметрии совпадает с осью Oz, если заданы радиус основания R = 0,5, высота цилиндра H = 2 и функция плотности , где r – полярный радиус точки.

Решение.

 Массу кругового цилиндра можно вычислить, используя тройной интеграл по области V, по формуле (12):

,

где – функция плотности, а V – область, соответствующая цилиндру.

Переходя к трехкратному интегралу в цилиндрических координатах, получаем:

Для вычисления работы используем криволинейный интеграл II рода (формула (13)): .

Составленный криволинейный интеграл сводим к определенному интегралу, используя параметрические уравнения кривой ВС:

.

Для заданной кривой получаем:

Таким образом, для нахождения работы нужно вычислить определенный интеграл:

 Сделаем замену переменной в определенном интеграле:

Задача 4. Задан радиус-вектор движущейся точки:

 . Найти векторы скорости и ускорения движения этой точки через 2 минуты после начала движения.

Решение.

Вектор-функция задана в виде: .

Найдем первые и вторые производные ее проекций x(t), y(t) z(t) по аргументу t:

Найдем векторы скорости и ускорения движения точки по формулам (14) и (15):

.

Через 2 минуты после начала движения векторы скорости и ускорения будут:

Задача 6. Проверить, является ли векторное поле силы  потенциальным или соленоидальным. В случае потенциальности поля найти его потенциал и вычислить с помощью потенциала работу силы  при перемещении единичной массы из точки M(0,1,0) в точку N(–1,2,3).

Решение.

Для проверки потенциальности векторного поля  найдем его ротор по формуле (19):

Следовательно, поле потенциально.

 Для проверки соленоидальности поля найдем его дивергенцию по формуле (17):

.

Следовательно, поле не соленоидально.

Функция нескольких переменных и ее частные производные

Отрицательное направление противоположно положительному.

Обратно, выбор положительного направления обхода контуров на поверхности задает выбор стороны этой поверхности.

Если поверхность состоит из нескольких частей, каждая из которых – двусторонняя поверхность, то можно соединить эти части в одну двустороннюю поверхность, согласовав ориентацию общих границ.

Например, в случае двух частей ориентация будет согласованной, если положительное направление движения по общей границе происходит от на поверхности и от на .

Это замечание позволяет говорить о внешней стороне замкнутой поверхности.

Например, для сферы:

- верхняя полусфера, внешняя нормаль составляет острый угол с осью z.

- нижняя полусфера. Внешняя нормаль составляет тупой угол с осью z.

и вместе составляют внешнюю сторону сферы. При этом положетельные направления обхода "экватора" противоположны друг другу на и на .

Площадь двусторонней поверхности. Сначала определим понятие площади поверхности , заданной уравнением , где - непрерывная функция, обладающая непрерывными производными в некоторой квадрируемой области .

Предположим, что мы рассматриваем разбиение этой поверхности на части непрерывными кривыми. Под диаметром множествапонимается точная верхняя грань расстояний между точками этого множества. Диаметр разбиения- это наибольший из диаметров получившихся частей.Обозначают его .

В каждой полученной части поверхности выберем точку и рассмотрим касательную плоскость к поверхности в этой точке. Пересечения касательных плоскостей ограничат многоугольники, которые образуют "панцирь" на поверхности. Этот "панцирь" состоит из плоских многоугольников и, следовательно, имеет площадь, равную сумме площадей его многоугольников.

Если при стремлении к 0 диаметра разбиения площади "панцирей" имеют конечный предел, то он и называется площадью поверхности. Это определение позволяет легко найти формулу для вычисления площади поверхности. Рассмотрим плоский многоугольник, нормаль к которому имеет направляющие косинусы . Можем считать, что .

Без ограничения общности, достаточно рассматривать прямоугольник, причем, для простоты, считаем, что его проекция на плоскость есть прямоугольник со сторонами , а сам он имеет стороны .

Тогда и (). В общем случае .

Если нормали выбирались в точках , то пусть - их направляющие косинусы. Согласно сказанному выше, площадь "панциря" есть . Эта сумма является интегральной суммой для двойного интеграла . Как установлено в §1, , поэтому .


Метод интегрирования подстановкой (заменой переменной)