Формула Грина Поверхностный интеграл Функция нескольких переменных Решение примерного варианта контрольной работы Производные ФНП высших порядков Функции комплексной переменной Векторное поле

Задачи типового расчета по математике. Решение курсовой, контрольной, самостоятельной работы

Векторное поле

Поток векторного поля через поверхность

Если в любой точке M(x, y, z) области VxOyz задан вектор , то говорят, что в области V задано векторное поле .

Примеры: силовое поле , поле скоростей  текущей жидкости, поле электростатических напряженностей .

Векторное поле является заданным, если задана векторная функция   от координат точки M(x, y, z). Как правило, функцию задают в виде , где P (x, y, z), Q (x, y, z),  R (x, y, z) являются функциями, о которых предполагают, что они непрерывны и имеют непрерывные частные производные по x, y, z в области V (область V может совпадать со всем пространством).

Аналогично определяют плоское векторное поле  в двумерной области D: .

Пусть в области VxOyz задана двусторонняя поверхность σ, в каждой точке которой определен орт внешней нормали  – единичной вектор, коллинеарный нормали к поверхности в этой точке и направленный в сторону, которую условились считать «внешней» стороной поверхности.

Поток векторного поля  через поверхность σ – это интеграл по поверхности σ от скалярного произведения вектора  на орт нормали  к поверхности (рис. 6):

.

Поток – это интегральная характеристика векторного поля, она является скалярной величиной. Например, для поля скоростей  текущей жидкости поток характеризует количество жидкости, проходящей через поверхность σ в направлении «внешней» нормали в единицу времени.

Если поверхность σ задана уравнением F(x, y, z) = 0, то вектор ее нормали коллинеарен градиенту функции, задающей поверхность: , следовательно, орт нормали

 .

Для вычисления поверхностного интеграла  поверхность σ проектируют на одну из координатных плоскостей, например, в область DxOy. Тогда , и вычисление потока сводится к вычислению двойного интеграла:

,  (16)

где знак «+» следует брать в случае, когда вектор  и орт «внешней» нормали , указанный в задаче, совпадают по направлению; если эти векторы противоположны по направлению, следует брать знак «–».

 При вычислении двойного интеграла  нужно подынтегральную функцию выразить через переменные x, y, используя заданное уравнение поверхности F(x, y, z) = 0.

Поток вектора через замкнутую поверхность σ в направлении ее «внешней» нормали обозначают .

Формула Остроградского-Гаусса. Дивергенция

Формула Остроградского-Гаусса устанавливает связь между интегралом по замкнутой поверхности σ в направлении ее «внешней» нормали и тройным интегралом по области V, ограниченной этой поверхностью:

.

Пусть  – векторное поле, заданное в области VxOyz . Дивергенцией векторного поля  называется скалярная функция

, (17)

Соленоидальное векторное поле

Векторное поле  называется соленоидальным, если существует такое векторное поле , для которого поле является полем его роторов: .

Поле  называется векторным потенциалом векторного поля .

Практически соленоидальность векторного поля определяется при помощи его дивергенции: если во всех точках односвязной области V дивергенция векторного поля равна нулю, то это векторное поле является соленоидальным.

Решение примерного варианта контрольной работы №1

Задача 1. Дана функция z = cos2(2x – y). Требуется:

1) найти частные производные  и ;

2) найти полный дифференциал dz;

3) показать, что для данной функции справедливо равенство: .

Задача 2. Найти частные производные  и , если переменные x, y, и z связаны равенством 4x2 y ez – cos(x3 – z) + 2y2 + 3x = 0.

Решение.

Имеем равенство вида F(x, y, z) = 0, задающее неявно функцию 2-х переменных. Для вычисления частных производных можно использовать формулы (2) и (3).

Для F(x, y, z) = 4x2yez – cos(x3 – z) + 2y2 + 3x получаем:

F= (4x2yez – cos(x3 – z) + 2y2 + 3x) = [считаем y и z постоянными] =

= 8xyez + sin(x3 – z)3x2 + 3 = 8xyez + 3x2sin( x3 – z) + 3;

F= (4x2yez – cos(x3 – z) + 2y2 + 3x) = [считаем x и z постоянными] =

= 4x2ez + 4y;

F = (4x2yez – cos(x3 – z) + 2y2 + 3x) = [считаем x и y постоянными] =

= 4x2yez – sin (x3 – z).

По формулам (2) находим частные производные функции z = z(x, y):

Задача 4. Дана функция двух переменных: z = x2 – xy + y2 – 4x + 2y + 5 и уравнения границ замкнутой области D на плоскости xОy: x = 0, y = –1,

x + y = 3. Требуется:

1) найти наибольшее и наименьшее значения функции z в области D;

2) сделать чертеж области D в системе координат, указав на нем точки, в которых функция имеет наибольшее и наименьшее значения.

Решение.

Для наглядности процесса решения построим область D в системе координат. Область D представляет собой треугольник, ограниченный прямыми x = 0, y = –1 и x + y = 3. Обозначим вершины треугольника: A, B, C (рис 9).

Чтобы найти наибольшее и наименьшее значения функции z, сначала найдем все стационарные точки функции z = x2 – xy + y2 – 4x + 2y + 5, лежащие внутри области D (если они есть), и вычислим в них значения функции.

Стационарные точки – это точки, в которых все частные производные

Задача 5. Поверхность σ задана уравнением z =  + xy – 5x3. Составить уравнения касательной плоскости и нормали к поверхности σ в точке М0(x0, y0, z0), принадлежащей ей, если x0 = –1, y0 = 2.

Решение.

Уравнения касательной плоскости и нормали к поверхности σ получим, используя формулы (5) и (6). Найдем частные производные функции

z = f (x, y) =  + xy – 5x3:

(x, y) = ( + xy – 5x3) = –  + y – 15x2;

(x, y) = ( + xy – 5x3) =  + x.

Точка М0(x0, y0, z0) принадлежит поверхности σ, поэтому можно вычислить z0, подставив заданные x0 = –1 и y0 = 2 в уравнение поверхности:

z =  + xy – 5x3  z0 =  + (–1) 2 – 5 (–1)3 = 1.

Вычисляем значения частных производных в точке М0(–1, 2, 1):

.

Задача 6. Дано плоское скалярное поле U = x2 –2y, точка М0(1,–1) и вектор . Требуется:

1) найти уравнения линий уровня поля;

2) найти градиент поля в точке M0 и производную  в точке M0 по направлению вектора ;

3) построить в системе координат xОy 4-5 линий уровня, в том числе линию уровня, проходящую через точку M0, изобразить вектор  на этом чертеже.

Задача 7. Дана функция комплексной переменной , где z = x + iy, и точка z0 = – 1 + 3i. Требуется:

представить функцию в виде w = u(x, y) +iv(x, y), выделив ее действительную и мнимую части;

проверить, является ли функция w аналитической;

в случае аналитичности функции w найти ее производную w′ в точке z0.

Решение.

1) Выделим действительную и мнимую части функции:

.

Тройной интеграл в декартовых координатах

Пусть в трехмерной области V пространства OXY задана функция . Разобьем произвольным образом область V на элементарные подобласти , в каждой подобласти зафиксируем произвольную точку ( ) и составим трехмерную интегральную сумму .

Тройным интегралом от функции по ограниченной области V называется предел последовательности соответствующих интегральных сумм при стремлении к нулю наибольшего из диаметров элементарных областей , если этот предел не зависит ни от способа разбиения области V на части, ни от выбора точек :

.

Вычисление тройного интеграла сводится к вычислению двойного интеграла и одного однократного либо к вычислению трех повторных интегралов. Если область V ограничена сверху поверхностью , снизу поверхностью , с боков – прямым цилиндром, вырезающим на плоскости OXY область D, то .

Рис. 9

С помощью тройного интеграла объем тела, изображенного на рис. 9, вычисляют по формуле:

.

Пример 3. Вычислить с помощью тройного интеграла объем тела, ограниченного поверхностями .

Решение. Сделаем чертеж.

Данное тело ограничено с боков цилиндрической поверхностью , снизу – поверхностью , а сверху – (рис. 10).

Рис. 10

Вычислим объем тела по формуле . Спроецируем тело на плоскость OXY и найдем область D. Для этого необходимо найти линию пересечения плоскостей z = y и z + y =2. Очевидно, плоскости пересекаются по прямой y = 1. Тогда

,

где – и – уравнения ветвей параболы , разрешенные относительно переменной x. Из рис. 10 видно, что тело симметрично относительно плоскости OYZ, поэтому можно упростить вычисление внутреннего интеграла, взяв в качестве нижнего предела x = 0, и результат удвоить.

Таким образом,

.


Метод интегрирования подстановкой (заменой переменной)