Формула Грина Поверхностный интеграл Функция нескольких переменных Решение примерного варианта контрольной работы Производные ФНП высших порядков Функции комплексной переменной Векторное поле

Задачи типового расчета по математике. Решение курсовой, контрольной, самостоятельной работы

Полное приращение и полный дифференциал ФНП

Полным приращением функции двух переменных z = f (x, y) в точке (x, y), вызванным приращениями аргументов  и , называется выражение .

Функция z = f (x, y) называется непрерывной в точке (x, y), если бесконечно малым приращениям аргументов соответствует бесконечно малое полное приращение функции.

Если обозначить  – расстояние между близкими точками  и (х, у), то  – это определение непрерывности ФНП на языке приращений.

Если функция z = f (x, y) непрерывна в любой точке (х, у)ÎD, то она называется непрерывной ФНП в области D.

 Функция z = f (x, y), полное приращение Dz которой в данной точке (x, y) может быть представлено в виде суммы двух слагаемых: выражения, линейного относительно   и , и величины, бесконечно малой более высокого порядка малости относительно , называется дифференцируемой ФНП в данной точке, а линейная часть ее полного приращения называется полным дифференциалом ФНП.

Если , где  –бесконечно малые при , то полный дифференциал функции z = f (x, y) выражается формулой: , или:

 (1)

(приращения независимых переменных совпадают с их дифференциалами: Dх = dx, Dy = dy).

Из определения полного дифференциала следует его связь с полным приращением: при малых  и  полное приращение функции Dz примерно равно ее полному дифференциалу:  с точностью до бесконечно малых более высокого порядка малости относительно .

Полный дифференциал функции z = f (x, y) зависит как от точки M(x0, y0), в которой он вычисляется, так и от приращений  и .

Производные ФНП высших порядков

Пусть функция z = f (x, y) имеет в точке (x, y) и её окрестности непрерывные частные производные первого порядка  и . Так как  и  являются функциями тех же аргументов x и y, то их можно дифференцировать по x и по y. При этом возможны следующие 4 варианта:

– эти частные производные называются частными производными второго порядка от функции z (x, y).

Частные производные  и  называются смешанными частными производными второго порядка.

Пример. Дана ФНП . Вычислим все её частные производные второго порядка.

Основное свойство смешанных частных производных: если функция z = f (x, y) и её частные производные , ,  и  определены и непрерывны в точке (x, y) и некоторой её окрестности, то в этой точке =, то есть смешанные частные производные при условии их непрерывности не зависят от порядка, в котором производится дифференцирование.

Пример 1. Вычислить двойной интеграл по области D, где D – треугольник с вершинами в точках О(0,0), А(1,1) и В(0,2).

Решение. Построим область D и запишем уравнения линий, ограничивающих эту область (рис. 7).

Рис. 7

Уравнение ОА: ; отрезок ВА задается уравнением ; OB – .

.

Пример 2. Вычислить с помощью двойного интеграла в полярных координатах площадь фигуры, ограниченной кривой, заданной уравнением .

Решение. Произведем замену переменных, полагая . Тогда уравнение кривой примет вид

, где .

Рис. 8

Тогда . С учетом того, что имеет период T = , .

С учетом симметрии фигуры вычислим площадь четвертой части и результат умножим на четыре.

Вычислим площадь по формуле .

.

Площадь всей фигуры, ограниченной данной линией, .


Метод интегрирования подстановкой (заменой переменной)