Задачи типового расчета по математике. Решение курсовой, контрольной, самостоятельной работы


Вычисление длины дуги кривой. Тройной интеграл в цилиндрических и сферических координатах Связь сферических и декартовых координат Двойной интеграл Приложения тройного интеграла Тройной интеграл в сферических координатах

Формула Грина. Условие независимости криволинейного интеграла второго рода от вида пути интегрирования

Пусть D - некоторая замкнутая область на плоскости хОу, ограниченная контуром L. На ней заданы функции Р = Р(х,у) и Q = Q(x,y), непрерывные на D вместе со своими частными производными первого порядка. Формула Грина связывает криволинейный интеграл второго рода по L с двойным интегралом по области D:

Движение по контуру L - в положительном направлении.

С помощью формулы Грина значение криволинейного интеграла по замкнутому контуру можно найти, вычислив двойной интеграл.

 Пример 2 

 Вычислить интеграл

где L - пробегаемая в положительном направлении окружность радиуса 2 с центром в начале координат.

РЕШЕНИЕ

В данном интеграле

Следовательно

По формуле (38) получим

где D - круг радиуса 2 с центром в начале координат. Двойной интеграл вычислим в полярных координатах

Без применения формулы Грина данный интеграл вычислить невозможно, так как невыполнимо интегрирование функций

С помощью формулы Грина доказывается, что криволинейный интеграл

не зависит от пути интегрирования MN, а зависит лишь от положения точек М и N, если во всех точках односвязной области D соблюдается равенство

При этом условии интеграл по любому замкнутому контуру LD равен нулю.

Область О называется односвязной, если ее граница состоит из одного не самопересекающегося контура L и внутри контура L нет точек, не принадлежащих области D.

Если выполняется равенство (39), выражение

является полным дифференциалом некоторой функции U=U(x,y)

Функцию U=U(x,y) называют потенциальной (первообразной) функцией для выражения

Р(х, y)dx + Q(x,y)dy

 Она может быть найдена по формуле

Где (x0,y0) - любая фиксированная точка области D; (х,у) - переменная точка; С -произвольная постоянная.

При выполнении условия (39) криволинейный интеграл равен разности значений потенциальной функции в конечной и начальной точках пути интегрирования:

Абсолютная сходимость несобственных интегралов по бесконечному промежутку. В предыдущем разделе рассматривались интегралы от знакоположительных (знакопостоянных) функций; мы убедились, что для таких несобственных интегралов существуют хорошие методы исследования их сходимости. Естественен вопрос: нельзя ли свести исследование интеграла от произвольной функции f(x) к исследованию интеграла от положительной функции | f(x)|? Можно показать, что если сходится интеграл , то обязательно сходится интеграл (идея доказательства: разобьем отрезок Xb = [a, b] на два множества, и , т.е. к первому множеству отнесены точки, в которых функция неотрицательна, ко второму - в которых функция отрицательна. Тогда , . В последней сумме оба слагаемые - монотонно возрастающие с ростом b, ограниченные сверху, следовательно, имеющие конечный предел при . Отсюда следует, что имеет конечный предел и предыдущая сумма). Обратное утверждение неверно, т.е. при сходимости интеграла интеграл может расходиться. Введём важное понятие абсолютной сходимости.

Опр.7.1.4. Если сходится интеграл , то интеграл называется сходящимся абсолютно. Если сходится интеграл , а интеграл расходится, то интеграл называется сходящимся условно.

 

Установить условную сходимость несобственного интеграла по бесконечному промежутку при отсутствии абсолютной сходимости позволяют два следующих признака:
признак сходимости Абеля:
1. пусть функции f(x) и g(x) определены в промежутке , причём f(x) интегрируема в этом промежутке, т.е. интеграл сходится (условно или абсолютно);
2. g(x) монотонна и ограничена: .
Тогда интеграл сходится.
признак сходимости Дирихле:
1. пусть функция f(x) интегрируема в любом конечном промежутке [a, b], и интеграл по этому промежутку ограничен (как функция верхнего предела b): ;
2. g(x) монотонно стремится к нулю при : .
Тогда интеграл сходится.
Применим, например, признак Дирихле к . Здесь f(x) = cos x, g(x) = 1/x, условия признака выполнены, поэтому интеграл сходится условно.


Метод интегрирования подстановкой (заменой переменной)