Задачи типового расчета по математике. Решение курсовой, контрольной, самостоятельной работы


Вычисление длины дуги кривой. Тройной интеграл в цилиндрических и сферических координатах Связь сферических и декартовых координат Двойной интеграл Приложения тройного интеграла Тройной интеграл в сферических координатах

Криволинейный интеграл первого рода

Пусть на плоскости хОу расположена кривая MN, гладкая (касательная к кривой непрерывно изменяется  вдоль кривой) или кусочно-гладкая (составленная из гладких участков). Функция z =f(х,y) определена и ограничена на кривой MN. Составляется интегральная сумма:

где n - число частичных кривых, на которые разделена кривая MN; (хi;yi) - некоторая точка, взятая на i -ой частичной кривой; Δli- длина i-ой частичной кривой, i=1,2,…n.

Предел интегральной суммы (22) при условии, что все длины Δli →0 (n→∞) называется криволинейным интегралом первого рода от функции f(х, у) по кривой MN и обозначается как

где MN - линия интегрирования; dl - дифференциал длины дуги.

Другое название интеграла (23) - криволинейный интеграл от функции f (х, у) по длине дуги MN.

Кривая MN может быть замкнутой линией L. Для обозначения криволинейного интеграла в этом случае используют символ 

Основные свойства и приложения криволинейного интеграла первого рода

1. Линейные свойства:

2.Если линия L состоит из частей L1 и L2, то

3. При изменении направления интегрирования криволинейный интеграл не изменяет своего значения, т.е. если под MN и NM понимать разнонаправленные линии, то

4. Это свойство характерно только для криволинейного интеграла 1-го рода, ввиду того, что dl > 0 при любом движении вдоль кривой MN.

С помощью криволинейных интегралов 1-го рода можно вычислять следующие геометрические и физические величины:

1)  длина кривой MN

2) Если кривая MN - материальная с распределённой плотностью , то

а) масса кривой

б) координаты центра тяжести

в)  моменты инерции кривой относительно осей координат и начала координат

Линейные уравнения первого порядка и уравнения Бернулли

Дифференциальное уравнение первого порядка называется линейным, если оно содержит и в первой степени, то есть имеет вид .

Уравнением Бернулли называется дифференциальное уравнение первого порядка вида , где и .

Эти уравнения решают с помощью подстановки .

Пример 3. Решить уравнение .

Решение. Это уравнение является уравнением Бернулли. Решим это уравнение с помощью подстановки . Тогда . Подставляя и в уравнение, получим: . Преобразуем это уравнение к виду . Найдем функцию , полагая в последнем уравнении . Тогда (мы нашли одну из первообразных функции ). Подставляя найденную функцию в уравнение относительно и , получим или .

Разделяем переменные и находим функцию :

.

Возведя в квадрат, находим

.


Метод интегрирования подстановкой (заменой переменной)