agen judi slot podxp.com
Способы задания геометрических фигур Метод проецирующих секущих плоскостей Построить линию пересечения плоскостей Выполнение ступенчатого разреза Обозначение разрезов Метод эксцентрических сфер

Начертательная геометрия Примеры выполнения заданий

Вращение вокруг проецирующей оси

Этот метод заключается в том, что любая точка вращается вокруг какой-либо оси, перпендикулярной к одной из плоскостей проекции. При этом точка в пространстве движется по траектории окружности, которая лежит в плоскости, перпендикулярной к оси вращения. Система плоскостей проекций остается неизменной.

Например, при вращении точки А вокруг оси i (рис. 9.3), перпендикулярной к П2, она движется по траектории, которая проецируется на плоскость П1 в виде окружности (точки А1 A1', a1, a1'" и т.д.), а на плоскость П2 - в виде следа горизонтальной плоскости уровня. Все фронтальные проекции точки А (А2, А2', А2" и т.д.) находятся на фронтальном следе горизонтальной плоскости. Точка i1 представляет собой горизонтальную проекцию оси i, а прямая i2 — ее фронтальную проекцию.

Если вращать точку А вокруг оси i, перпендикулярной к фронтальной плоскости проекций П2 (рис. 9.4), то фронтальные проекции А2, А2', А2" и т.д. точки А будут лежать на окружности, плоскость которой перпендикулярна к оси i и горизонтальной плоскости проекции. При этом горизонтальные проекции А2 А2', А2" и т.д. точки А будут расположены на горизонтальном следе этой плоскости. ОБЩИЕ ПОНЯТИЯ О РАЗВЁРТЫВАНИИ ПОВЕРХНОСТЕЙ Будем рассматривать поверхность как гибкую нерастяжимую оболочку. В этом случае некоторые поверхности путём преобразования можно совместить с плоскостью без разрывов и складок. Поверхности, допускающие такое преобразование, называются развёртывающимися.