Тройной интеграл в сферических координатах [an error occurred while processing this directive]

Математика курс лекций, примеры решения задач

Пример 1.5. Вычислить определитель D = , разложив его по элементам второго столбца.

Решение. Разложим определитель по элементам второго столбца:

D = a12A12 + a22A22+a32A32=

= .

Пример 1.6. Вычислить определитель

A = ,

в котором все элементы по одну сторону от главной диагонали равны

нулю.

Решение. Разложим определитель А по первой строке:

A = a11 A11 = .

Определитель, стоящий справа, можно снова разложить по первой строке, тогда получим:

A = .

И так далее. После n шагов придем к равенству A = а11 а22... ann. Условия параллельности и перпендикулярности прямых.

Пример 1.7. Вычислить определитель .

Решение. Если к каждой строке определителя, начиная со второй, прибавить первую строку, то получится определитель, в котором все элементы, находящиеся ниже главной диагонали, будут равны нулю. А именно, получим определитель: , равный исходному.

Рассуждая, как в предыдущем примере найдем, что он равен произведению элементов главной диагонали, т.е. n!. Способ, с помощью которого вычислен данный определитель, называется способом приведения к треугольному виду.

 

Пример 1.8. Для матрицы А =  найти обратную.

Решение. Находим сначала детерминант матрицы А
D = det А =  = 27 ¹ 0, значит, обратная матрица существует и мы ее можем найти по формуле: А-1 = 1/D , где Аi j (i,j=1,2,3) - алгебраические дополнения элементов аi j исходной матрицы. Имеем:  

 

 

 

  откуда А-1 = .

Вычисление двойного интеграла

Теорема (Фубини). Пусть непрерывна в области , ограниченной сверху графиком функции , снизу - , , а по бокам – отрезками вертикальных прямых и . Тогда .

Без доказательства.

Замечание. Если область можно ограничить так: , то .

Смысл этой теоремы ясен – указан способ сведения нового для нас объекта – двойного интеграла к уже изученным обычным интегралам.

При вычислении интегралов часто бывает удобно сделать замену переменных , где - непрерывны в некоторой области . Впоследствии мы будем часто писать просто вместо и т.п. и, кроме того, говорить при выполнении вышеупомянутых условий, что и - непрерывно дифференцируемые в функции.

Пусть при этом формулы задают взаимно-однозначное отображение областей: . Кроме того, не стремясь к минимальности условий, потребуем, чтобы всюду на области не равнялся 0.


Метод подстановки (замена переменной интегрирования)