Полупроводниковые триоды Состав и основные характеристики атомного ядра Основные типы радиоактивности Цепная ядерная реакция Электрическое поле диполя Закон Ома для замкнутой цепи

Принцип Паули. Заполнение электронных оболочек в атоме

Опыт показывает, что по мере увеличения порядкового номера Z атома происходит последовательное строго определенное заполнение электронных уровней атома. Объяснение такого порядка заполнения уровней нашел Паули (1940). Это открытие названо впоследствии принципом Паули: в любом квантовом состоянии может находиться не более одного электрона. Поэтому каждый следующий электрон невозбужденного атома должен занимать самый глубокий из еще незаполненных уровней. Тщательная проверка явилась подтверждением принципа Паули. Другими словами, в атоме (и в любой квантовой системе) не может быть электронов с одинаковыми значениями всех четырех квантовых чисел. Именно принцип Паули объяснил, почему электроны в атомах оказываются не все на самом нижнем дозволенном энергетическом уровне.

Данному значению п соответствует 2п2 состояний, отличающихся друг от друга значениями квантовых чисел ℓ, mℓ, ms. Совокупность электронов атома с одинаковыми значениями квантового числа п, образуют так называемую оболочку. В соответствии со значением п оболочки обозначают большими буквами латинского алфавита следующим образом:

Значение n

1

2

3

4

5

6

Символ оболочки

K

L

M

N

O

P

Оболочки подразделяют на подоболочки, отличающиеся квантовым числом ℓ. Различные состояния в подоболочке отличаются значениями квантовых чисел тℓ и ms. Число состояний в подоболочке равно 2(2l + 1). Подоболочки обозначают или большой латинской буквой с числовым индексом (К, L1, L2, …) или в виде

1s;  2s,2p; 3s,3p,3d; ...,

где цифра означает квантовое число п, т. е. принадлежность к соответствующей оболочке (К, L, М, ...). Возможные состояния электронов в атоме и их распределе­ние по оболочкам и подоболочкам показано в табл. 13.2, в кото­рой вместо обозначений ms = +1/2 и -1/2 использованы для на­глядности стрелки ↑ и ↓. Видно, что число возможных состоя­ний в К, L, М,... оболочках равно соответственно 2, 8, 18,..., т. е. равно 2п2. Полностью заполненные оболочки и подоболочки имеют L = 0 и S = 0, значит и J = 0. Это важный результат: при определенных квантовых числах L и S атома заполненные подоболочки можно не принимать во внимание.

Взаимодействие между молекулами. Потенциал взаимодействия. Силы, действующие между электрически нейтральными молекулами или атомами, называют межмолекулярными силами. По своему происхождению они имеют электрический природу и объясняются неоднородным распределением электронов внутри молекулы, что приводит к возникновению электрических дипольных моментов молекул. Электрический дипольный момент можно представить как два разноименных, но одинаковых по величине заряда, расположенных на близком расстоянии друг от друга.

Квантово-механическая формулировка принципа Паули определяется принципом тождественности одинаковых частиц: в системе одинаковых частиц реализуются только такие состояния, которые не меняются при перестановке местами двух частиц. В самом деле, если тождественные частицы имеют одинаковые квантовые числа, то их волновая функция симметрична относительно перестановки частиц. Для фермионов, т.е. частиц с полуцелым спином, (а именно ими являются электроны) волновая функция является антисимметричной, поэтому два одинаковых фермиона, входящих в одну и ту же систему, не могут находиться в одинаковых состояниях.

Таблица 13.2.

Оболочка

K

L

M

Значение n

1

2

3

Подоболочка

(n,l)

1s

2s

2p

3s

3p

3d

ml

ms

0

↑↓

0

↑↓

+1

↑↓

0

↑↓

-1

↑↓

0

↑↓

+1

↑↓

0

↑↓

-1

↑↓

+2

↑↓

+1

↑↓

0

↑↓

-1

↑↓

-2

↑↓

Число электронов в подоболочке

2

2

6

2

6

10

Число электронов в оболочке

2

8

18

Принцип Паули в квантово-механической формулировке гласит: системы фермионов в природе встречаются только в состояниях, описываемых антисимметричными волновыми функциями. Отсюда и вытекает предыдущая формулировка, смысл которой заключается в том, что в системе одинаковых фермионов любые два из них не могут находиться в одном и том же состоянии. Отметим, что число однотипных бозонов, т.е. частиц с нулевым или целым спином, находящихся в одном и том же состоянии, не лимитируется, т.к. бозоны описываются симметричными волновыми функциями.

Тепловое излучение – излучение нагретых тел оптического диапозона.

Тепловое излучение в ряду других излучений.

Тепловое излучение

Электролюминесценция

Катодолюминесценция

Хемилюминесценция

Равновесность – тело излучает энергии столько сколько поглащает.

§2 Основные характеристики теплового излучения.

1. Излучательность (энерг. светимость) RT

RT=f(T)

RT = W/ ΔSΔt [Вт/м2]

2. Спектральная плотность излучательности

RυT = f(υ,T) R λ T = f(λ,T)

RυT =(dWυ, υ+dυ)/ ΔSΔtdυ [дж/м2]

R λ T =(dW λ, λ +d λ)/ ΔSΔtd λ [Вт/м3]

RT = интеграл (0 - бесконечность) (RυTdυ) = интеграл (0 - бесконечность) (RλTd λ)

RυTdυ = RλTd λ

RλT = RυTdυ/d λ

О периодической системе элементов Д.И. Менделеева. В основе систематики заполнения электронных состояний в атомах лежит принцип Паули. Это позволяет объяснить Периодическую систему элементов Д.И. Менделеева (1869) — фундаментальный закон природы — основу современной химии, атомной и ядерной физики. Понимание периодической системы элементов основано на идее об оболочечной структуре электронного облака атома. Процесс застройки первых 22-х элементов периодической системы представлен в таблице 13.3. Каждый следующий атом получается из предыдущего добавлением заряда ядра на единицу (е) и добавлением одного электрона, который помещают в разрешенное принципом Паули состояние с наименьшей энергией. Так, третий элемент (литий) имеет, кроме заполненной K-оболочки, один электрон в подоболочке 2s.

Характеристические рентгеновские спектры. Рентгеновские спектры, возникающие при бомбардировке электронами антикатода рентгеновской трубки, бывают двух видов: сплошные и линейчатые. Сплошные спектры возникают при торможении быстрых электронов в веществе антикатода и являются обычным тормозным излучением электронов. Вид этих спектров не зависит от материала антикатода.

Молекулярные спектры. Молекула является квантовой системой; она описывается уравнением Шредингера, учитывающим движение электронов в молекуле, колебания атомов молекулы, вращение молекулы. Решение этого уравнения - очень сложная задача, которая обычно разбивается на две: для электронов и ядер. Для приближенного решения задачи используют адиабатическое приближение, согласно которому квантово-механическая система разделяется на тяжелые и легкие частицы — ядра и электроны. Так как массы и скорости этих частиц сильно различаются, то считается, что движение электронов происходит в поле неподвижных ядер, а медленно движущиеся ядра находятся в усредненном поле электронов. Следовательно, в адиабатическом приближении уравнение Шредингера для молекулы распадается на два уравнения — для электронов и ядер.


Разрешенные и запрещенные электронные энергетические зоны в кристаллах